Bio-DME production using Modular Slurry Phase DME Synthesis Process

Yotaro Ohno and Hiroshi Yagi
RenFuD Corporation
Contents

• Introduction of RenFuD Corporation
• Characteristics of Slurry Phase DME synthesis process
• Technology development of Slurry Phase DME synthesis process and Transfer to RenFuD
• Business requirement for Bio-DME production
• Modular DME production plant from Biogas
• Economics of Bio-DME production
• Process licensing policies
• Conclusion

RenFuD
Introduction of RenFuD Corporation

• RenFuD: Renewable Fuel Development
 Technical consulting company established in 2009.
• DME related conceptual studies conducted on;
 - DME production from Renewable hydrogen
 - DME production from Biomass
 - DME production from Oxygen blast furnace gas
 - DME production from Brown coal with Renewable Hydrogen
 - Comparative study of Hydrogen carriers
• Experimental study of DME synthesis from Bio-derived gas
• RenFuD has taken over the global right of Process licensing and proprietary catalyst supply of Slurry phase DME synthesis process in 2016.
DME Production Technology

- **Two step process (Methanol synthesis + Dehydration)**

 (1) Methanol synthesis: \(4H_2 + 2CO \rightarrow 2CH_3OH \)

 (2) Dehydration of Methanol: \(2CH_3OH \rightarrow CH_3OCH_3 + H_2O \)

- **One step process (Slurry Phase DME Synthesis)**

 In addition to the above reactions (1) and (2), (3) Water gas shift reaction is promoted in One Single reactor.

 (3) Water gas Shift reaction: \(H_2O + CO \rightarrow H_2 + CO_2 \)

(4) DME synthesis: \(3H_2 + 3CO \rightarrow CH_3OCH_3 + CO_2 \)
Characteristics of DME Direct synthesis process

[1] Catalyst system for DME synthesis reaction

- 3 function (Methanol synthesis + Dehydration + Shift) catalyst system realizes DME synthesis reaction with high equilibrium conversion from syngas of $\text{H}_2/\text{CO}=1$. This ratio is adequate for carbon rich resources.
- Proprietary catalyst with high conversion and selectivity in slurry phase.

[2] Slurry phase reactor

- Effective heat conductivity of slurry is high, homogeneous temperature distribution is realized without hot spot.
- Heat transfer coefficient is so high that heat removal from reactor is easy.
- Catalyst exchangeable during the operation.

[3] Separation of produced DME

- Little water by-production enables DME separation at chilled temperature.
- CO_2 is separated by being absorbed in DME.

RenFuD
Equilibrium CO conversion

- DME synthesis has higher equilibrium conversion than Methanol synthesis at lower pressure.
Slurry Phase Reactor for DME Synthesis

- Homogeneous temperature distribution to be controlled easily, adequate for highly exothermic reaction
- Proprietary Catalyst active and stable in slurry phase
- Possibility of exchanging catalyst during the operation

RenFuD
Technology Development and Transfer to RenFuD

- Slurry phase DME synthesis process had been developed by NKK (now JFE), stepwise starting from beaker scale, through bench scale, to 5 ton/day pilot plant with its own proprietary catalyst since 1989.

- From 2001 to 2007, 100 ton/day demonstration plant project was successfully conducted by DME Development Corp. funded by 10 companies. The process performance, catalyst life and long-term stable operation have been demonstrated for a commercial scale technology. With this technical success, feasibility studies of commercial scale DME production from natural gas or coal were conducted.

- With change of JFE’s management policies, four companies (Total, JAPEX, INPEX, Toyota Tsusho) succeeded the technology in 2010.

- In 2016, those four companies have transferred the technology patents to RenFuD Corporation.
DME 5ton/day Pilot plant

RenFuD
DME 100 ton/day Demonstration Plant
Results of Test Operation

• Stable operation was realized and operation procedure for a commercial scale plant has been confirmed.

• Targeted values of the process performance were achieved.

• Engineering data were obtained and scale-up technology has been established.

<table>
<thead>
<tr>
<th>RUN NO.</th>
<th>Period</th>
<th>Duration (day)</th>
<th>DME production(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUN100</td>
<td>2003/12/12-2004/1/26</td>
<td>43</td>
<td>1,240</td>
</tr>
<tr>
<td>RUN200</td>
<td>2004/6/20-7/31</td>
<td>39</td>
<td>2,500</td>
</tr>
<tr>
<td>RUN300</td>
<td>2004/10/6-12/16</td>
<td>72</td>
<td>4,230</td>
</tr>
<tr>
<td>RUN400/500</td>
<td>2005/6/15-11/13</td>
<td>152</td>
<td>9,070</td>
</tr>
<tr>
<td>RUN600</td>
<td>2006/4/3-5/12</td>
<td>40</td>
<td>2,480</td>
</tr>
<tr>
<td>(Total)</td>
<td></td>
<td>346</td>
<td>19,520</td>
</tr>
</tbody>
</table>
DME production for 5 months operation

- DME production plant was operated very smoothly for 5 months following operation plan.
- Despite of unplanned shut down caused by power failure during thunderstorm, DME production was restarted and recovered for short time.
DME Shipment from 100 ton/day plant
Business requirement for Bio-DME production

• With CO₂ problem growing after the Paris Agreement in 2015, DME production from renewable resources, especially from biomass is expected to be a promising option.

• There is a limit to the collection of biomass as raw materials. The use of biomass is inevitably made by a small to medium-sized plant. Compared to large-scale plants, DME production cost is so high that the business model of local production for local consumption is suitable.

• Food waste and sewage sludge collected in the environment business of local governments as well as wood waste in the wood industries are expected practical because the supply cost of these materials is low.

(Typical gas composition from Biomass)
- Biogas from fermentation of organic waste: CH₄ 60%, CO₂ 40%
- Gasification gas of wood waste with O₂/Steam: H₂ 43%, CO 43%, CO₂ 14%
DME production by Two step process

1. **Shift reaction**
 \[3\text{CO} + 3\text{H}_2 + \text{H}_2\text{O} \rightarrow 2\text{CO} + 4\text{H}_2 + \text{CO}_2\]

2. **Biomass gasification**
 - Wood chip
 - \(\text{O}_2/\text{Steam}\)

3. **Methanol synthesis**
 \[2\text{CO} + 4\text{H}_2 \rightarrow 2\text{CH}_3\text{OH}\]

4. **Dehydration**
 \[2\text{CH}_3\text{OH} \rightarrow \text{CH}_3\text{OCH}_3 + \text{H}_2\text{O}\]
DME production by One step process

- Number of equipment is less and process configuration is simpler, reaction pressure is lower compared to the indirect DME synthesis via methanol.

\[
3\text{CO} + 3\text{H}_2 + \text{CO}_2 \rightarrow \text{CH}_3\text{OCH}_3 + \text{CO}_2
\]

(RenFuD)
Biogas from Methane fermentation of waste

- In case of a city with population of 250 thousand peoples, they discharge:
 - Sewage sludge: 212t/h (water content 98.5%)
 - Food waste: 1.6t/h (water content 73%)

- Methane fermentation of these wastes produces:
 - Biogas (CH\textsubscript{4} 60%, CO\textsubscript{2} 40%): 1340Nm3/h (60kmol/h)
DME production process flow from Biogas

- 15ton/day of DME is produced from 1221Nm3/h (54.5kmol/h) of Biogas. Cold gas efficiency of DME production is 68.7%.
Typical Plot plan of Modular DME 15ton/day Plant

- Total Plant Area: 70m x 35m

- **DME Synthesis & Purification Area** 13 x 24
- **Syngas Production Area** 13 x 16
- **Utility Facility Area** 28 x 42
 1. Boiler Package
 2. Cooling Water Package
 3. Hot Oil Package
 4. Waste Water Package
 5. Hydrant System
 6. Instrument Air Package
 7. Water Storage

- **DME Storage**
- **DME Recycle & Refrigerant Compressor Room** 13 x 15
- **Syngas Compressor Room** 13 x 15
- **Control Room**
- **Ground Flare**
3D-View of Main process part

- Feedstock: Biogas from methane fermentation
- Plant capacity: 15ton/day (5000ton/year)
- Each unit module is smaller than 12m high, 2.6m x 2.4m section for land transportation
Economics of DME production from Biogas

- Plant capacity: 15ton-DME/day
- Plant cost: 15MMUS$(±30%)
- Depreciation: straight-line for 20 years
- Biogas price: 0-4US$/MMBTU
- Profit rate: 20% of DME price
Process Licensing policies

- Pre-FS with customers
- License agreement in cooperation with owner and EPC company
- Deliverables: Basic design package, Operation manual, Guarantee figures
- Proprietary catalyst supply
- Supervise of operation
- Process boundary

RenFuD
Conclusion

• Slurry phase DME synthesis technology has been confirmed by long term operation of 100 ton/day demonstration plant. Catalyst performance in slurry phase reactor was stable.

• Slurry phase DME synthesis process is suitable for the synthesis gas derived from biomass, because it synthesizes directly DME from synthesis gas of H₂/CO=1.

• Number of equipment is less and process configuration is simpler, reaction pressure is lower compared to the indirect DME synthesis via methanol. Lower equipment cost and operating cost are expected.

• Modular type plant is easy to be relocated responding to changes in raw material supply situation.

• RenFud is ready for process licensing and catalyst supply.

Please contact: ohno@renfud.com